Estimating High-Dimensional Directed Acyclic Graphs with the PC-Algorithm

نویسندگان

  • Markus Kalisch
  • Peter Bühlmann
چکیده

We consider the PC-algorithm ([13]) for estimating the skeleton of a very high-dimensional acyclic directed graph (DAG) with corresponding Gaussian distribution. The PC-algorithm is computationally feasible for sparse problems with many nodes, i.e. variables, and it has the attractive property to automatically achieve high computational efficiency as a function of sparseness of the true underlying DAG. We prove consistency of the algorithm for very high-dimensional, sparse DAGs where the number of nodes is allowed to quickly grow with sample size n, as fast as O(na) for any 0 < a < ∞. The sparseness assumption is rather minimal requiring only that the neighborhoods in the DAG are of lower order than sample size n. We empirically demonstrate the PC-algorithm for simulated data and argue that the algorithm is rather insensitive to the choice of its single tuning parameter.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PC algorithm for nonparanormal graphical models

The PC algorithm uses conditional independence tests for model selection in graphical modeling with acyclic directed graphs. In Gaussian models, tests of conditional independence are typically based on Pearson correlations, and high-dimensional consistency results have been obtained for the PC algorithm in this setting. Analyzing the error propagation from marginal to partial correlations, we p...

متن کامل

PenPC: A two-step approach to estimate the skeletons of high-dimensional directed acyclic graphs.

Estimation of the skeleton of a directed acyclic graph (DAG) is of great importance for understanding the underlying DAG and causal effects can be assessed from the skeleton when the DAG is not identifiable. We propose a novel method named PenPC to estimate the skeleton of a high-dimensional DAG by a two-step approach. We first estimate the nonzero entries of a concentration matrix using penali...

متن کامل

Penalized likelihood methods for estimation of sparse high-dimensional directed acyclic graphs.

Directed acyclic graphs are commonly used to represent causal relationships among random variables in graphical models. Applications of these models arise in the study of physical and biological systems where directed edges between nodes represent the influence of components of the system on each other. Estimation of directed graphs from observational data is computationally NP-hard. In additio...

متن کامل

Learning high-dimensional directed acyclic graphs with latent and selection variables

We consider the problem of learning causal information between random variables in directed acyclic graphs (DAGs) when allowing arbitrarily many latent and selection variables. The FCI (Fast Causal Inference) algorithm has been explicitly designed to infer conditional independence and causal information in such settings. However, FCI is computationally infeasible for large graphs. We therefore ...

متن کامل

درونزایی قیمت و مقدار در تجزیه و تحلیل تقاضای گوشت مرغ و گاو: شواهدی از گراف های غیرچرخشی سودار

In this study the causality relationship among variables in chicken and beef markets were investigated based on annual data from 1974 to 2004 in the I.S. of Iran. For this purpose, causality algorithms emerging from directed acyclic graphs were used in two cases, one based on co- integration analysis and innovation correlation matrix of Vector Error Correction Model (VECM) and the other using d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2007